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The classical relativistic two-body problem with spin and 
self-int eract ions 

A 0 Barutt, Coskun Onem$ and Nuri UnalO 
International Center for Theoretical Physics, Trieste, Italy 

Received 17 October 1989 

Abstract. The recent classical model of a spinning Dirac particle with Zitterbewegung is 
generalised to two particles interacting electromagnetically. A variational principle is 
formulated which leads to a covariant Hamiltonian with separate centre of mass and relative 
terms much like the quantum two-body Dirac equation. The relative motion has the same 
form as the spinless case, but with the time-dependent modulated coupling constant 
representing the spin effects. The canonical quantisation of the theory is immediate. 

1. Introduction 

There has been much recent work on the classical models of single spinning particles, 
but very little on the interacting two-body problem to which the present work is devoted. 

It is well known that classically a spinning quantum particle cannot be modelled 
completely as a spinning top, because the phase space of a top is much larger than 
the phase space of the quantum spin. The latter has therefore been modelled classically 
either using additional abstract non-commuting Grassmann variables [ 13, or using 
additional classical c-number spinor variables [2] to describe the dynamics of spin. 
In the resultant picture of the particle, a point charge performs a helical motion (called 
Zitterbewegung) around a fictious centre of mass which itself moves like a relativistic 
spinless particle. The internal orbital angular momentum of the charge around the 
centre of mass accounts precisely for the spin of the particle. The helical motion is 
the natural state of the free particle, and the charge does not radiate in this state. This 
picture is exactly the classical analogue of the intuitive interpretation of the Dirac 
electron, but now it is concrete and one can actually calculate and plot the helical 
trajectory. Indeed, when the classical theory is quantised, one obtains precisely the 
Dirac equation. The quantisation has been discussed in various forms: canonical 
quantisation [2] replacing Poisson brackets by commutations, Schrodinger-picture 
quantisation [3], path-integral quantisation [4]. 

The classical theory with c-number spin variables has other remarkable properties. 
Although the charge is pointlike, the electron acquires an affective internal structure 
of the size of its Compton wavelength due to the helical motion. Thus, in interaction 
with external electromagnetic fields which are coupled to the charge, the electron 
behaves as a point particle (as verified by very high energy experiments), yet it has a 
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natural localisation length of the order of 1/ m. Furthermore, because of the two screw 
senses of the helical motion, there is the notion of antiparticles already on the classical 
level. Moreover, the theory can be generalised to curved spaces [ 5 ] ,  to Kaluza-Klein 
spaces [ 6 ]  and to spinning strings and membranes [ 7 ] .  An equivalence has been 
established between the theories with Grassmann variables and with c-number spinors 
[8], the latter being more intuitive and directly related to physical variables. The 
purpose of this work is to generalise the one-body equations to two (or more) spinning 
particles interacting electromagnetically. The action principle for such a system takes 
into account, self-consistently, not only the mutual interactions of the particles, but 
also their self-interactions and radiation of the system. The latter terms are nonlinear. 

This formulation again shows how close the classical theory is to the corresponding 
relativistic quantum theory of interacting spinning particles if the c-number spinors 
are employed. The classical two-body equations are, as we shall see, formally the same 
as the quantum equations, and  go over into them after quantisation. 

In  section 2 we give a modified version of the one-body classical spinor equations 
which is better suited to the two-body problem and  closer to quantum theory. Then 
in section 3 we derive the full two-body equations including self-energy effects, and  
compare the results with quantum theory. 

2. Modified one-body equations 

It is best to formulate the relativistic theory of a particle in terms of a covariant action 
principle with respect to an  invariant time parameter T. We have two sets of canonically 
conjugate dynamical variables, the usual pair ( x , ( T ) ,  p , ( ~ ) ) ,  and another pair of spin 
variables ( z (  T ) ,  Z( 7 ) )  which are c-number, four-component spinors. The action of the 
theory is (in units c = 1)  

A = d.r[iAZy. n i  +p,(x’ - Iy’z) + eA,(xjZywz] -- dx FFVF+”. (1) 

There are two fundamental constants in the theory: A, a constant of dimension of 
action ( h )  and e, the charge. Mass m does not appear here and  will come in later as 
the value of a constant of motion. The spin variables z and Z = z’y. n, with y ‘  n = y’n,,, 
are thus in C4 (the space of 4 complex numbers). The unit timelike vector n,  transforms 
like a 4-vector and  indicates the choice of the time axis, and 7, are the Dirac matrices. 
In spite of the appearance of Dirac matrices, expressions like Sy’z, etc are all classical. 
Presently we shall pass from these complex spin variables z ,  Z to the more physical 
real spin variables. The use of ( z ,  I )  is very convenient for exhibiting the geometrical 
symplectic structure of the theory. Finally, with respect to ( l ) ,  the dots are derivatives 
with respect to 7, x, are coordinates of the charge, x, its velocity. The Lagrange 
multipliers p ,  will become the canonical momenta of the charge, which are dynamically 
independent from 1,. 

I 4 l I  

2.1. Equations of motion 

The equations of motion derived from the action (1) are 

l y e  n =-IT 1 1 
y .  n i  = -- rrz Ti, = eF, ,x” 

A A 
1, = Zy,z 
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for the particle variables, and 

F P ” , ” =  -e  f y p z b ( x - x ( ~ ) )  dT= -j” I (3) 

for the electromagnetic field with FWy = A , ,  -A,,”. In ( 2 )  we have used the usual 
kinetic momenta 

r, = p ,  - eA, 

r= r p y , .  

(4) 

and the matrix 

The system ( 2 )  is integrable. We have two constants of the motion 

JL̂  = f y .  nz ( 5 )  

and 

X=Xg+‘ = x , ( p p - e A w ) =  Z y , z ( p K - e A @ ) .  ( 6 )  

J = O  and %=O ( 7 )  

It is easily proved, using (2),  that 

hence the constants J+” = N and %’= m characterise a solution. 
In the previous formulation of the classical spinor model [ 2 ]  the first term of the 

action (1) was ihIz instead of Zy nz = fy’z (for n ,  = (1000)). This difference amounts 
essentially to a different choice of the invariant T parameter. Now we have 

dxo 
dT 

xo = - = i y o z  = constant 

so that we can choose T to be the proper time parameter of the charge in the frame 
n@ = (lOOO), whereas previously we had f z  = constant, and the corresponding time was 
identified with the proper time of the centre of mass. We shall see that the new form 
is more appropriate for many purposes, in particular in agreement with the normalisa- 
tion of the Dirac wavefunction when the theory is quantised. Other features of the 
theory, like Zitterbewegung, remain essentially unchanged. 

2.2. Exact solutions for free particles (Zitterbewegung) 

We now solve the system ( 2 )  for the case A, = 0. The first two equations give for the 
spin variables 

2 ( ~ ) = l ( O ) e x p ( i / h y * p y *  n ~ ) = f ( O ) y -  nexp(i/Ay. n y . p ~ ) y .  n ( 9 )  

Z(T) =exp(- i /hy-  n y .  ~ T ) z ( O )  (10) 

and for the coordinates and momenta we obtain 

p ,  = constant 

x, = f ( O ) y .  n exp(i/hy- n y . p . r ) y *  nyg exp(-i/Ay* n y . p T ) z ( O ) .  (11) 
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In order to exhibit the helical motion we have to evaluate the exponentials. After 
some algebra (see appendix 1) we obtain in units c = 1, A = 1: 

where 

PI = 4 P a n )2  - P2 P t , = ( P ' n )  

are the components of p,, normal to n, and parallel to n,, respectively. 
In particular, if n "  = (lOOO), pil = pa, pL = 0 = p ,  hence 

. Po 1 

P P 
F ( T ) = ~ ( o )  eipoT cosp . r - i - s inp~+-  y ' p y ' s i n p ~  

z(~)=e- 'Po'  c o s p r + i - s i n p ~ - -  y o y * p  s i n p ~  ~ ( 0 ) .  ) Po i 
( 

( P P 
In the rest frame of the particle p = 0, z and Y have simple oscillations 

. T ( T )  = F ( O )  e imT Z ( T )  = e-'"z(O). 

The helical orbit itself is given by its velocity vector X, = fy,z which we evaluate 
using (12). After some lengthy calculation the result is (cf appendix 2 )  

which can easily be integrated again. Here the constant vector V, is 

v,, = n,(2P,l-P2X)-P,(~-Pplx).  
Thus, the orbit is given by the initial position, initial velocity and initial acceleration 
for a given particle with Z =  m, ulr= N (which we can take equal to 1) and momentum 
P@. 

2.3. Symplectic structure 

Our dynamical system is symplectic with the Poisson brackets 

Indeed, both commutator and Hamilton's equations are satisfied with our Hamiltonian 
2 = zypzrr,,, with rr, = p,, - eA, : 

ax 
az 

f = { f ,  2 } = i -  y -  n = i i r r y .  n 

a 2  
az z = { z, x} = -i y . n - = -i y . n m  

ax a 2  
ap" axp 

k, ={rr,, %}= -eA,,"---- - eF,,X' 
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a% 
aP 

x, = { x, , X} = - = zy ’1z 

which are the equations (2).  

2.4. Spin variables 

We can use as new dynamical variables, instead of z, i the real and imaginary parts 
of z. Or, as in previous work [2], we can use the variables (x,, p , ,  U,, S, , ) ,  where 

(16) U, = x, = zy,z 

and the spin tensor S,, is defined by 

The deformed commutator [ , ]* is defined by 

[Y,, YYI* = Y,Y * n Y v  - Y Y Y ‘  ny,. 

r j  = iy,z + iy,i = i fy”r ,y  - ny,z - izy,y * ny,ryz 

We have then 

= -4s,,ry 

and 

s,, = - $[ye, yY]*]*zTa 

which can also be written as 

2.5. One-body self-energy term 

Equation (2) shows that T, and x, are independent dynamical variables. In the 
presence of an external field, T, is no longer constant, so we must solve the four 
coupled equations in (2).  Choosing a gauge A,, p = 0, equation (3) becomes 

OA,(x)=j,  = e  d7QPz8(x-X(T)) 

which can be solved as 

A,(x) = e dy D ( x  - y)Fy,zS(y - x (  7)) dT+ Ayt  J 
= e d7 D ( x  - x( 7))Iy’z -I- Ay‘ 

where D ( x - y )  is the Green function of the d’Alembertian 0. If we insert (20) into 
the action ( l ) ,  at the same time replacing the last term in ( l ) ,  and by partial integration 
as 
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we can rewrite our action (1) in the form 

A = J dT(iA2y nz + p,x@ - p p ~ y @ z  + eAe,”‘Zy@z) 

- ez [ d r  dT’ Z( T) y’z( T ) D (  X (  T )  - X (  r’))Z( 7’) y,z( 7’). 
2 

From here it is possible to derive the generalisation of the Lienard-Wiechert potentials 
and the Lorentz-Dirac equation to spinning particles. This has been done recently 
[SI. The result is that the classical Lorentz-Dirac equation 

acquires a new spin term and goes over to 

In 

3. 

the limit U’-, 1, U. d + 0, +, + mx, we recover the original equation (22). 

Relativistic two-body system with self-interaction 

We now start, instead of (l),  from the action for two particles (the generalisation to 
many particles is immediate) 

A =  dTl[iAIZ,y. n z , + p , , ( x ~  - Z l y f i z , ) ] +  dr2[iA2Z2y. n z 2 + p 2 , ( x f  - . Z 2 y p z 2 ) ]  J J 
+ 1 dx[ (I dT1 e l f l y + z l  - 6 ( x  - X I )  

dT2 e2i2y!-’z26(x - x 2 )  A , ( x )  -$F,,F@” . 3 
The field equations 

e , . Z , y p z , 6 ( x - x , )  dT,- e 2 f 2 y ’ l z , S ( x - x 2 )  d r 2  5 5 FPU,” = -j, = - 

can be solved in the gauge A@,@ = 0 to give 

A , ( x ) =  d y D ( x - y )  e , 4 , y p z , 6 ( y - x , )  dTl+ e 2 Z 2 y ~ z 2 8 ( y - x 2 )  dr2  I (I 5 
= 5 e , Z , y @ z , D ( x  - x , ( r , ) )  d r , +  e 2 Z 2 y ’ z 2 D ( x - x 2 ( r 2 ) )  dT2.  I ( 2 5 )  

We insert this into (21). In the last term we make an integration by parts 
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We then obtain the ‘action at a distance’ 

A =  d~,[ iAIZ1y.  n z l + p l p ( x ~ - ~ l y p z , ) ] + ~  d ~ ~ [ i A ~ ? ~ y .  nz2+p2, (x i . ; -Z2y”z , ) ]  I 

The first two terms are the kinetic energies of the particles, the third term is the mutual 
interaction of two particles, and the last two terms the self-energies of each particle. 
The arguments of z l  and z2 are clear from the integrals. The spin spaces of each 
particle should be distinguished: y P f 1 )  and y””) ,  but the superscripts (1) and ( 2 )  are 
clear from the context, so we omit them. 

Variation of the action with respect to particle coordinates 1 and 2 would give 
complicated coupled equations. Instead we shall discuss a variational principle for 
the two-body system as a whole in analogy to the quantum theory [lo]. 

3.1. Centre-of-mass and relative coordinates 

For this purpose we introduce composite spinors 

z(71, 7 2 )  = Z I ( T I ) @ Z ~ ( ~ ~ )  z( 71 , 7 2 )  = 51 ( 71) f2( 7 2 ) .  (27) 
These are 16-component spinors, direct products of the two spinor spaces. We shall 
now rewrite the action (24) in terms of these composite spinors. This is straightforward 
for the third term. But in order to transform the remaining terms we normalise our 
spinors such that 

d7, f l y ’  n z I 8 ( 7 , - r ) = 1  ( 2 8 )  5 
for every 7, or simply N ,  = Z,y * nz, = 1 ( i  = 1,2). We now multiply each kinetic energy 
term in ( 1 )  by the normalisation integral of the other particle at equal times. Similarly 
in the self-energy terms we multiply each term twice by the normalisation integrals of 
the other particle. Then the action can be brought. to the following form: 
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where XI = XJ2y nz2 and X 2  = X2Z,y. nz, . The spin matrices are always written as a 
tensor product, the first factor referring to particle 1, the second to particle 2. 

This action looks like a two-times action, but we shall now show that it actually 
reduces to a one-time action, and hence to a one-time equation for both particles, as 
in the quantum case [lo]. 

We now introduce the standard centre-of-mass and relative coordinates and 
momenta by 

xl, =X,+( l - a )x ,  x2, = X, - ax, a = m,/(m,+ m2) (30) 

and 

P l r  = UP, + P P  P 2 ,  = (1 - a l p ,  -P, 
together with the transformation of the invariant time parameters 

r l =  T + ( l - a ) r  r2=  T-ar  with d r ,  d r2  = d T  dr. (31) 

The composite spinor Z ( r l ,  r 2 )  will be a function Z( T, r )  in the new variables. We 
obtain then by the replacements 

a a  a 
ar, a7 aT 

az az az 
ar, ar2 a T ‘  

- + a -  

-+-=- 

-- a - --+ a (1 - a )  - a 
ar2 a7 aT 

Furthermore, because each particle has its own time r ,  and r 2 ,  we have dx , /dr2=0,  
and dx2/dr,  = O ;  hence we find 

dxz dx2 - dx, dx, 
d r ,  d T  d r2  d T ‘  

- (33) 

Thus all relevant derivatives are with respect to T ;  hence we can integrate over relative 
times r and r’. 

In the second integral, we can decompose covariantly with respect to the normal 
n’” to a spacelike surface 

(x, -x2)’= x2 = ( x .  n)’-x: 

Hence 

6( (x  * n )  - x,)+ 6((x * n )  +x,) 
x, 

S(X2) = 

where x, = [(x n)* - x2]1’2 is the relativistic relative distance. 
With these steps, our action depends only on the COM time T 

(34) 

-! 
2 

x Z ( T ’ ) y p O y .  nZ(T’) 

+e;Zy. n O y l ” Z D { X - X ( T ’ ) - a ( x - x ( T ’ ) } Z ( T ‘ ) y .  n,ypZ(T’)] (35) 

d T  dT’[e:Zy, 0 y .  nZD{X - X (  T’) + (1 - a ) ( x  -x(  T‘)} 
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where 

The fact that the relative time 7 drops out can also be seen from the relation k6' .  n, = 0. 
Hence only the perpendicular component of the relative momentum p ,  to the spacelike 
surface appears for the equation 

Tp,k@Z = z p y  k,,Z. 

We can rewrite the action as 

A =  d T [ i z y .  n @ y .  n Z + P , X p + p , x p - 2 ]  I 
where the covariant Hamiltonian X is given by 

(37)  

= ZHZ.  (38)  

Note that p . x = ( p  n ) ( x  n )  + p l .  xl = pl * 1,. Hence, the dynamical variables are 
P,, X, for the centre-of-mass motion and P,,, X,, for the relative motion, and the 
self potential is given by 

v"""=fe,y ,Oy* n d T ' D { X - X ( T ' ) + ( l  - a ) ( x - x ( T ' ) ) ) Z ( T ' ) y w O  y *  n Z ( T ' )  I 
+$e,y.  nO y,  I dT'  D{X -X( T ' )  - a ( x  - x)( T ' ) ) }  

x Z( T ' )  y - n y,z(  T). (39) 

The two-body equations of motions are now 

. ax avselr 
axp ax, p, =-= 2- Z 

- a 2  - i z y .  n @ y -  n = - - = - Z H  
az 

ax 
az i y .  n O  y .  nZ=-= HZ. 

The constants of the motion are, as in one-body problem, 

x = Z y .  n O  y .  n Z  2 = ZHZ.  
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We define the value of 2 to be the total rest mass of the system 

x= M (41) 
and the value of J+* can be taken to be unity by the normalisation of spinors. If we 
first disregard the (small) radiative effects in Vre", then (40) shows that the total 
momentiim P$, is constant, and the relative motion is transversal to the time vector n ,  
and is given by 

For n ,  = (lOOO), this is simply 

r 
d = ( Z y * O y , , Z ) e l e 2 -  r3 ' (42') 

We thus obtain the important result that the effect of spin on the relative motion is to 
multiply the coupling constant e, ez by the time-dependent (oscillatory) spin factor 
( Z y " O y , Z ) .  As a result the orbit will be modified by the Zitterbewegung. 

In order to write the equations in ordinary time t, instead of the invariant time 7, 
we start from (41), neglecting Vse", i.e. 

This is a classical Hamiltonian, but linear in both the total momentum P, and the 
relative momentum p r l .  The Hamiltonian in ordinary time can be identified with Pll 
i.e. Po if n,, = (1000). Since Z r  I2 = 27. n 0 y . nZ = A' we obtain 

(P. n )  =  PI^ = ZrYZP,;  - Zk:Zp,_ - z y "  0 y ,d=+  M ) X '  (44 ( r_ 
or, for n, = (1000) and  choosing the constant of motion h" = 1 ,  

1 
r P,, = H~ = Z r z .  P +  Z( y ,  yo - yo . y 2 ) z .  p - e l e , Z (  y y  0 y i ) ~ .  -+ hf. (44') 

This is exactly of the same form as the two-body Dirac Hamiltonian operator [ lo]  

H ~ =  r - (45) 

but now, in the classical case, the cofficient of P, p and l l r  are c-numbers, but 
time-dependent quantities, instead of 16 x 16 matrices. 

Equation (40) or the Hamiltonian (43) can easily be quantised as in the one-particle 
case. One has only to replace the Poisson brackets by commutators. 

3.2. Limit to one-body spinning particles 

If particle 2 is very heavy, i.e. 

+ O  m ,  m 2 + m  a=- 
m ,  + mz 

we have the limits 

x; = r*yozz + 1 x, = 2, y z ,  + 0 
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and 

P:= m, P z = O  

and if we also neglect the spin of the heavy particle at rest, i.e. 

Z,y nz, + 0 

then the two-body action (26) goes over to ( A ,  1, c = 1) 

A =  dr[iZ,y.  n z , + p , ( i ~ - Z , y ~ i , ) ] - e , e ,  d7, dT2 2 , ~ o z , D ( x , ( ~ l ) - x 2 ( ~ 2 ) )  J J -‘I dT1 dTt Z , y ’ ” z l ~ ( x , ( ~ ~ ) - x l ( ~ ~ ) ) Z ~ y , i ~  
2 

which is the action (21) for particle 1 in the field AY‘(x,) = e, d7, D(x, -x2(7’)) of 
the second particle at rest. 

3.3. Limit to spinless particles 

If both particles are spinless we replace 

fiy nz, + 0 i = 1 , 2  

i.e. no spin kinetic energy, and 

where A,  are the normalisation constants of the spinors. Then the action (24) goes 
over into 

p l ~ x , - p l ~ - ( p l - e ~ A ( x , ) ) + i e i ( p l - e l A ) ~ A ( x , ) ) - ~ ~  A ,  F,,F””dx 
m, m 

or 

This is precisely the phase-space action of spinless particles [4], which is equivalent 
to the configuration-space action 

A = dT,( fm,xf+  e,x, . A(x,))  -- FpyFpY dx 5 4 ‘ I  
if we use A, = f and 1, = ( 1/ m )( p ,  - eA, ), or p ,  = mx, + eA, . 

Appendix 1 

We wish to expand the exponential exp(iy * py . ns). With y p = A, y - n = B, we have 

is (is)’ 
l !  2 !  

e x p ( i y * p y .  ns)=exp(iABs)= 1+-AB+-ABAB+. . , , 
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Setting A’= a’ and B2 = b2 and AB + BA = 2( p * n )  = c, we find 

( A B ) ’ =  CAB - a’b’ 
( A B ) ’ =  (c2-a’b’)AB-ca’b2 

( A B ) ”  = f , A B + g ,  

(AB)”+’  = ( fnc  +g, , )AB -fna2b2 = f n + , A B  + g,+, = ( A B  1)( 
gn-1 

so that we have the recursion formula 

(’“+I) = ( -a2b2  0 ’)( g ,  ’“) zz M (  L), 
& + I  

Thus with 

we can write 

exp(iABs) = ( A B  1) eiMs 

Since M is now a numerical 2 x 2 matrix, in our case, 

M = ( p -  n ) + g . a  
51 = t ( 1  -P2) 

ISI’=(p. n)’-p =p ,  

5’ = t i (  1 + p’) 53=(p .  n )  
2 2  

we obtain 

5 . a  cos pis + i - sin pLs 
PI 

eiMs - - e i ( p . n ) s  

Consequently 

PI 

. ( p *  n)s inp ,s+i  Y * P Y *  nsinpis  

exp(iABs) = ( A B  1) e i (p ’n ) s  

cos p,s - - I  - 
Pi  P i  

- - e i ( p . n ) r  

Appendix 2 

For any quantity f d z  we obtain its time development, using (12) 

a( 7) = f( T ) d Z (  7) 

PI1 i 
PI PI 

cospi7- i -s inpi7+-y.py.  nsinp,r  

1 1 
x cos pL7+i  EL sin pi7-- y . n y  . p sin p ~ 7  z ( 0 ) .  ( PL Pi. 
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This expression may be evaluated to give 
2 2  

+d(0)Q-+sin2pLT sin 2p,r 
d ( T j  = d(o) + d(o) - 

2PL PL 

1 

PL 
- 7 y . p ~ .  n d y .  n y . p s i n 2 p L r  
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